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Abstract
We consider a Brownian particle, with diffusion constant D, moving inside an
expanding d-dimensional sphere whose surface is an absorbing boundary for the
particle. The sphere has initial radius L0 and expands at a constant rate c. We
calculate the joint probability density, p(r, t |r0), that the particle survives until
time t, and is at a distance r from the centre of the sphere, given that it started at a
distance r0 from the centre. The asymptotic (t → ∞) probability, Q, obtained
by integrating over all final positions, that the particle survives, starting from the
centre of the sphere, is given by Q = [4/�(ν +1)λν+1]

∑
n bn exp

[−(
αn

ν

)2/
λ
]
,

where λ = cL0/D, bn = (
αn

ν

)2ν/[
Jν+1

(
αn

ν

)]2
, ν = (d − 2)/2 and αn

ν is the
nth positive zero of the Bessel function Jν(z). The cases d = 1 and d = 3 are
especially simple, and may be solved elegantly using backward Fokker–Planck
methods.

PACS number: 05.40.−a

1. Introduction

First-passage problems for stochastic systems have attracted renewed interest in recent years
[1], notably in systems with infinitely many coupled degrees of freedom, where the effective
stochastic process describing a single degree of freedom is often non-Markovian [2]. However,
even in systems with few degrees of freedom, and Markovian dynamics, problems with moving
boundary conditions have proved difficult to solve.

In this paper we consider a single diffusing particle, or Brownian walker, moving within a
d-dimensional sphere, of initial radius L0, which is expanding at a constant rate c. The surface
of the sphere defines an absorbing boundary for the particle. We present exact results, for any
space dimension d, for the probability that the particle survives up to time t.

In an earlier paper [3] this problem was solved for the special case d = 1, in the limit
t → ∞, using an elegant method based on the backward Fokker–Planck equation. In section 2,
we recall how this method works and show how it can be extended to the case d = 3. The
method does not, however, appear to be useful for other values of d. Why this should be so
becomes clear later in the paper, where we obtain a complete solution for general d.
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To our knowledge, the results presented here (and in [3]) are the first exact results for this
type of problem, although a related problem in which the cage is contracting was solved in
dimension d = 1 using an image method [4]. However, it is not clear how this method can
be extended to general dimension d. For the expanding cage, approximate methods have been
developed by Krapivsky and Redner (KR) [5] in the limit of slow (‘adiabatic approximation’)
and fast (‘fast approximation’) motion of the absorbing boundary. The relevant dimensionless
parameter is λ = cL0/D, where D is the diffusion constant of the particle. The slow and fast
limits correspond to small and large λ respectively.

In section 3, we show that the adiabatic approximation of Krapivsky and Redner can be
modified to obtain an exact solution of the usual (forward) Fokker–Planck equation for the
survival probability of the particle for any time t, and any initial position within the sphere,
for any space dimension d.

The outline of the paper is as follows. In section 2, we present the backward Fokker–
Planck equation for the infinite-time survival probability, and its solutions for d = 1 and
d = 3. In section 3 we show how the conventional forward Fokker–Planck equation can be
solved to obtain the survival probability in any space dimension, for any time t and for an
arbitrary starting point within the sphere. In section 4 we extract the infinite-time survival
probability. The previous results for d = 1 and d = 3 are recovered as special cases. For
general d, it is not straightforward to extract analytically, from the exact solution, the limiting
behaviour for large λ, so in section 5 we employ the ‘fast approximation’ of Krapivsky and
Redner to obtain an approximate solution that becomes exact in this limit. Section 6 concludes
with a brief summary of the results.

2. Infinite-time survival probability of a particle in a expanding cage: the backward
Fokker–Planck method

The backward Fokker–Planck equation is a powerful method for the study of first-passage
problems in many contexts [6]. In this section, we show how it can be used to obtain, rather
easily, the infinite-time survival probabilities in one and three dimensions. For the general case
in which we wish to determine the survival probability at general time t, we need to use the
usual forward Fokker–Planck equation. Since this approach is more algebraically complex,
we defer it to section 3.

2.1. Solution in one dimension

In [3] we considered a diffusing particle obeying the Langevin equation Ẋ(t) = η(t),X(0) =
x, where η(t) is Gaussian white noise with mean zero and time correlator 〈η(t1)η(t2)〉 =
2Dδ(t1 − t2), bounded by a linearly-expanding absorbing cage with edges located at
±(L0 + ct). After a time �t the boundaries have moved to positions ±(L0 + c(t + �t))

and the particle has moved to x + �x, where 〈�x〉 = 0 and 〈(�x)2〉 = 2D�t . The
probability Q(x,L0, t) that the particle still survives after a time t satisfies the obvious
equation Q(x,L0, t) = 〈Q(x + �x,L0 + c�t, t − �t)〉. Expanding to first order in �t yields
the backward Fokker–Planck equation

∂Q

∂t
= D

∂2Q

∂x2
+ c

∂Q

∂L0
. (1)

The novelty in this approach resides in treating L0, which gives the initial positions of the
boundaries, as an additional independent variable.
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Discarding the time-derivative term, to directly obtain the infinite-time limit, and
introducing dimensionless variables y = cx/D and λ = cL0/D gives the simplified equation

∂2Q

∂y2
+

∂Q

∂λ
= 0, (2)

subject to the absorbing boundary conditions Q(±λ, λ) = 0, and with Q(y, λ → ∞) = 1.
The solution is

Q(y, λ) =
∞∑

n=−∞
(−1)n cosh(ny) e−n2λ, (3)

which satisfies both the differential equation and the boundary conditions.
For a particle starting at the origin (y = 0), the survival probability Q(0, λ) is given by

Q(0, λ) =
∞∑

n=−∞
(−1)n e−n2λ ∼ 1 − 2e−λ, λ → ∞. (4)

We can extract the small-λ behaviour by using the Poisson sum formula,
∞∑

n=−∞
f (n) =

∞∑
k=−∞

f̃ (2πk),

where f̃ (k) is the Fourier transform of the function f (n) to recast equation (3) in the form

Q(0, λ) =
√

π

λ

∞∑
k=−∞

e−π2(2k−1)2/4λ ∼ 2

√
π

λ
e− π2

4λ , λ → 0. (5)

2.2. Solution in three dimensions

We now extend this result to the case of a diffusing particle in three spatial dimensions bounded
by a linearly-expanding, absorbing sphere of radius L(t) = L0 + ct using the same backward
Fokker–Planck method.

For general spatial dimensionality d, equation (2) has the obvious generalization

∇2Q +
∂Q

∂λ
= 0 (6)

where the dimensionless spatial coordinate is r = cr0/D, and λ = cL0/D as before, where
r0 is the initial location of the particle within the sphere. Exploiting the spatial isotropy, we
infer that Q depends on r only through its magnitude, r = |r|, giving, for d = 3,

∂2Q

∂r2
+

2

r

∂Q

∂r
+

∂Q

∂λ
= 0. (7)

This equation has separable solutions of the form

Qk(r, λ) = sinh(kr)

r
e−k2λ,

characterized by an index k, from which a general solution can be constructed by superposition.
Note that solutions of the form [cosh(kr)/r] exp(−k2λ) are rejected as they are not regular at
the origin. At this point we make no assumptions about the values of k. We find, however,
that no simple superposition of solutions Qk(r, λ) satisfies the required boundary condition
Q(λ, λ) = 0. We note, however, that any derivative of Qk(r, λ) with respect to k is also
a solution of equation (7) since it is simply a superposition of two values of k which are
infinitesimally close together. We therefore try taking the first derivative of this solution and
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postulate a sum of the functions dQk(r, λ)/dk with integer values of k, in analogy with the
one-dimensional case, to obtain

Q(r, λ) =
∞∑

n=−∞
an

[
cosh(nr) − 2nλ

r
sinh(nr)

]
e−n2λ.

If we choose the amplitudes to be an = 1 for all n, we see by inspection that the boundary
conditions Q(λ, λ) = 0 and Q(r, λ → ∞) = 1 are satisfied. The survival probability is
therefore given by

Q(r, λ) = 1

r

∞∑
n=−∞

[r cosh(nr) − 2nλ sinh(nr)] e−n2λ. (8)

For a particle starting at the origin we take the limit r → 0, giving

Q(0, λ) =
∞∑

n=−∞
(1 − 2λn2) e−n2λ (9)

∼1 − 2(2λ − 1) e−λ, λ → ∞. (10)

To obtain an expression suitable for extracting the behaviour at small λ, we take the Poisson
transform of this sum, giving

Q(0, λ) = 2π5/2

λ3/2

∞∑
k=−∞

k2 e− π2k2

λ ∼ 2π5/2

λ3/2
e− π2

λ , (11)

for λ → 0.
For general space dimension d, the backward Fokker–Planck method does not seem to be

useful. The reason for this will become clear in the following section.

3. Survival probability in a d-dimensional expanding sphere

We approach the problem in general dimension by solving the forward Fokker–Planck equation
for the probability density, p(r, t |r0, 0), defined as the probability density that the particle,
starting at position r0 within the sphere of radius L0, still survives (has not yet reached the
absorbing boundary) at time t, and is currently at position r. It satisfies the partial differential
equation ∂p/∂t = D∇2p. The boundary condition is p(r, t |r0, 0) = 0 for |r| = L0 + ct and
the initial condition is p(r, 0|r0, 0) = δd(r − r0).

In generalized polar coordinates, the Fokker–Planck equation reads

∂p

∂t
= D

(
∂2p

∂r2
+

d − 1

r

∂p

∂r
+ L
p

)
, (12)

where L
 is a generalized angular derivative operator. From the spherical symmetry of the
problem, p(r, t |r0, 0) only depends on r ≡ |r|, r0 ≡ |r0| and the angle between r and r0.
The problem can be simplified by choosing the direction of r0 as the principal polar axis and
integrating out the angular degrees of freedom by defining

p̄(r, t) = 1

Sd

∫



d
p(r, t |r0, 0),

where d
 is an element of solid angle, Sd = 2πd/2/�(d/2) is the integral over the solid angle,
i.e. Sd is the surface area of the unit sphere in d dimensions, and the dependence of p̄(r, t) on
r0 is implicit.
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The differential equation for p̄ reads

∂p̄

∂t
= D

(
∂2p̄

∂r2
+

d − 1

r

∂p̄

∂r

)
. (13)

The initial condition is

p̄(r, 0) = δ(r − r0)

Sdr
d−1
0

. (14)

Our method of solution for the moving boundary problem is motivated by the solution
for a fixed absorbing boundary at r = L0. Separable solutions of equation (13), regular at the
origin, have the form

p̄k(r, t) = Jν(kr)

rν
e−k2Dt ,

where Jν(x) is the Bessel function of order ν and ν = (d − 2)/2. The absorbing boundary
condition, p̄(L0, t) = 0, selects a discrete set of k-values, kn = αn

ν

/
L0, where αn

ν is the nth
positive zero of Jν(x), to give the discrete set of solutions

p̄n(r, t) = Jν

(
αn

ν r
/
L0

)
rν

e−( αn
ν )2Dt/L2

0 . (15)

Following the approach of KR [5], our trial solution of equation (13) replaces, in
equation (15), the initial radius L0 by the time-dependent radius L(t) = L0 + ct , and t

/
L2

0 by∫ t

0 dt ′/L2(t ′). We also multiply the static solution by an unknown function of r and t to give

p̄(r, t) = g(r, t)
Jν

( αn
ν r

L(t)

)
rν

exp

{
−(

αn
ν

)2
D

∫ t

0

dt ′

L2(t ′)

}
. (16)

This differs from the KR approach in two ways. First, we allow a general function g(r, t),
whereas KR only consider functions g(t), independent of r. Secondly, we will ultimately
superpose all possible solutions of the form (16), with different values of n, to obtain the exact
solution, whereas KR keep only the lowest mode (n = 1) and are therefore restricted to the
adiabatic limit. On the other hand, the KR method works in the adiabatic limit for any form
of cage expansion, whereas our approach is restricted, as we shall see, to a linearly expanding
cage.

The alert reader will have noted that by introducing a general function g(r, t) in
equation (16) we have simply replaced one unknown function, p̄(r, t), by another, g(r, t).
This is, of course, true. However, the resulting equation for g(r, t) simplifies greatly for the
case of interest, namely L(t) = L0 + ct , when it can be exactly solved.

On substituting equation (16) into equation (13) we obtain the following equation for
g(r, t):

∂rrg

g
+

1

r

∂rg

g
− 1

D

ġ

g
+

(
αn

ν

L

)(
rL̇

DL
+ 2

∂rg

g

)
J ′

ν

(
αn

ν r
/
L

)
Jν

(
αn

ν r
/
L

) = 0, (17)

where dots indicate time derivatives and J ′
ν(x) = dJν/dx.

In general, this partial differential equation is intractable, so we try to simplify it by
looking for a solution in which the terms that involve Bessel functions, and the terms that do
not, separately vanish. Such a solution exists if the two equations

ġ = D

(
∂rrg +

1

r
∂rg

)
(18)

∂rg = −
(

L̇r

2DL

)
g (19)
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are both satisfied by the same function g(r, t). Equation (19) can be integrated immediately
to give

g(r, t) = A(t) exp

(
− L̇r2

4DL

)
, (20)

where A(t) is an arbitrary function. Substituting this result into equation (18) gives

Ȧ =
(

L̈r2

4DL
− L̇

L

)
A. (21)

By assumption, A(t) depends only on t, and not on r. For a consistent solution, therefore,
we require L̈ = 0, i.e. the absorbing boundary must move at constant speed. Solving
equation (21) for this case gives

A(t) = K/L(t), (22)

where K is an arbitrary constant.
The general solution for the case L(t) = L0 + ct is obtained as an arbitrary superposition

of separable solutions, combining equations (16), (20) and (22):

p̄(r, t) =
∑

n

an

L(t)rν
Jν

(
αn

ν r

L(t)

)
e− ( αn

ν )2Dt

L0L(t)
− cr2

4DL(t) , (23)

the summation being over all positive zeros of Jν(x).
As usual, the amplitudes an are determined by the initial condition, equation (14),

exploiting the orthogonality property of Bessel functions:∫ L0

0
r drJν

(
αn

ν r

L0

)
Jν

(
αm

ν r

L0

)
= L2

0

2

[
Jν+1

(
αm

ν

)]2
δnm.

The exact solution is thus

p̄(r, t) = 2

L0L(t)(rr0)νSd

∑
n

Jν

( αn
ν r

L(t)

)
Jν

( αn
ν r0

L0

)
[
Jν+1

(
αn

ν

)]2 e− (αn
ν )2Dt

L0L(t)
− c

4D

(
r2

L(t)
− r2

0
L0

)
. (24)

Equation (24) represents our most general result, giving the survival probability for general
time t, for general values of the initial and final distances from the origin, and for general
space dimensionality d. Note that p̄(r, t) depends on the constants L0, c and D as well as r0, r

and t. To make contact with our earlier results for d = 1 and d = 3, we now compute the
infinite-time survival probability, for given starting radius r0, by letting t → ∞ and integrating
over the final coordinate r.

4. The infinite-time survival probability

To find the probability that the particle survives for infinite time, we integrate the probability
density over the whole domain. We introduce the dimensionless variables, ρ = cr0/D and
λ = cL0/D, in terms of which the infinite-time survival probability can be expressed as

Q(ρ, λ) = lim
t→∞

2eρ2/4λ

L0L(t)rν
0

∞∑
n=1

Jν

( αn
ν ρ

λ

)
J 2

ν+1

(
αn

ν

) e− ( αn
ν )2

λ In(t), (25)

where

In(t) =
∫ L(t)

0

rd−1 dr

rν
Jν

(
αn

ν r

L(t)

)
e

−cr2

4DL(t) . (26)
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To extract the large-t behaviour, we change variables to x = r/L(t) in the integral

In(t) = L(t)d−ν

∫ 1

0
xd−1−νJν

(
αn

ν x
)

e− cx2L(t)

4D dx. (27)

For large t, i.e. large L(t), the integral over x is dominated by small values of x and the Bessel
function can be replaced by its small-argument form Jν(z) ∼ (z/2)ν/�(ν + 1), to give, for
t → ∞,

In(t) ∼ 2d−1

(
D

c

)d/2 (
αn

ν

2

)ν

L(t). (28)

Putting this result into equation (25) gives our final result

Q(ρ, λ) = 2ν+2

ρνλ
eρ2/4λ

∞∑
n=1

(
αn

ν

)ν
Jν

(
αn

ν
ρ

λ

)
[
Jν+1

(
αn

ν

)]2 e− ( αn
ν )2

λ , (29)

where we recall that ρ = cr0/D, λ = cL0/D and ν = d/2 − 1.
It is interesting to consider the special case of a particle starting at the origin. Taking the

limit ρ → 0 in equation (29) gives

Q(0, λ) = 4

�(ν + 1)λν+1

∞∑
n=1

(
αn

ν

)2ν[
Jν+1

(
αn

ν

)]2 e− (αn
ν )2

λ . (30)

The limiting form for small λ is given by the first term in the sum.
We now compare our results with those obtained using backward Fokker–Planck methods

in section 2. The cases d = 1 and d = 3 correspond to ν = −1/2 and ν = 1/2 respectively.
The functions J−1/2(z) and J1/2(z) have positive zeros at z = (2n − 1)π/2 and z = nπ

respectively, while J 2
1/2[(2n − 1)π/2] = 4/[π2(2n − 1)] and J 2

3/2[nπ ] = 2/(π2n). It is the
fact that the Bessel functions zeros are uniformly spaced in d = 1 and d = 3 that makes these
cases especially simple.

For d = 1, the final result, equation (29), can be written as

Q(ρ, λ) = eρ2/4λ

√
π

λ

∞∑
n=−∞

cos ((2n − 1)πρ/2λ) e−(2n−1)2π2/4λ, (31)

while for d = 3 it takes the form

Q(ρ, λ) = eρ2/4λ 2π3/2

ρ
√

λ

∞∑
n=−∞

n sin(nπρ/λ) e−n2π2/λ. (32)

For the special case ρ = 0, these results reduce to equations (5) and (11). One can show this
correspondence holds for general ρ by using the Poisson summation formula (with ρ → y in
d = 1 and ρ → r in d = 3) to transform equation (29) into equations (3) and (8) for d = 1
and d = 3 respectively.

It is not simple to use the Poisson summation formula on equation (29) for general d,
since we do not have explicit expressions for αn

ν except for ν = ±1/2. This means that it is
not straightforward to analytically extract the large-λ limit of Q(0, λ). In the final part of this
paper, therefore, we extend the ‘fast approximation’ of [5] to general dimension d in order to
investigate the large-λ behaviour.

5. Approximate solution for fast expansion (large λ)

For a rapidly expanding cage in d dimensions we follow the approximate method used in [5].
This approach consists of equating the loss of survival probability to the outward probability
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flux at the boundary. For a particle starting at the origin, we define Q(t) to be its survival
probability at time t. If the cage is expanding rapidly, the probability flux through the boundary
is small and we can use the free form for the diffusion propagator:

p(r, t) = Q(t)
exp(−r2/4Dt)

(4πDt)d/2
,

where r is the distance from the origin at time t. We equate the rate of decrease of Q to the
flux through the boundary:

dQ

dt
= SdL(t)d−1D ∂rp(r, t)|r=L(t)

or

− ln Q(t) = 1

�(d/2)(4D)d/2

∫ t

0
du

(L0 + cu)d

u
d
2 +1

exp

(
− (L0 + cu)2

4Du

)
. (33)

Setting t = ∞, we can evaluate the integral for large λ using the method of steepest descents
to obtain the infinite-time result

Q(∞) = exp

(
−2

√
πλ

d−1
2

�(d/2)
e−λ

)

∼ 1 − 2
√

πλ
d−1

2

�(d/2)
e−λ, λ → ∞, (34)

which, for the cases d = 1 and d = 3, agrees with the large-λ limits given in equations (4)
and (10) respectively.

6. Summary

In this paper, we have derived exact results, in arbitrary space dimension d, for the survival
probability of a particle diffusing inside a uniformly expanding cage that acts as an absorbing
boundary for the particle. We found very simple forms for the survival probability in one and
three dimensions by using a backward Fokker–Planck approach. Our solution for general d,
however, using forward Fokker–Planck methods, indicates that the simplicity of the solutions
in one and three dimensions is fortuitous. Our method of solution seems to be restricted to the
case where the boundary moves at constant speed, though it will be interesting to pursue the
question of whether there are any other soluble cases.
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